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Comparison of exact and approximate methods for 
analysing vibrational relaxation regions 

By P. A. BLYTHE 
Department of the Mechanics of Fluids, The University of Manchester 

(Received 4 September 1960) 

The validity of various solutions for the vibrational relaxation region in shock- 
waves, and of the assumptions on which they are based, has been assessed by 
comparison with an exact solution obtained by numerical integration of the 
relaxation equation, and also by use of the Rayleigh-line equations. Estimates 
of errors in the values of the relaxation frequency, determined by means of 
these solutions, are given. 

1. Introduction 
In  the preceding paper (Johannesen 1961) a discussion of the basic physics of 

vibrational relaxation regions in shock-waves was given. The paper presented a 
method whereby the exact shock-wave equations (equations (4), (5) and (6) of 
Johannesen) could be solved for any given temperature dependence of the 
relaxation frequency w ,  assuming the simple relaxation equation 

ac 
- = a(3-cr) 
at 

to hold. (The notation used in this paper is the same as that used by Johannesen, 
unless otherwise stated.) 

Alternatively the method could be used to obtain, from experimental records, 
local values of w, rather than over-all ones. 

In  this paper an exact numerical integration has been carried out for a strong 
shock-wave in nitrogen using Gunn’s expression for w,  

w = A p  T-lexp ( - BT-4) [ 1 - exp ( - 8/T)] ,  (2) 

where A and B are constants. 
This numerical solution is referred to as the exact solution and previously 

published solutions are compared with it. These previous solutions are all 
approximate in the sense that they either use simplified forms of the shock-wave 
equations or make certain other simplifying assumptions (e.g. w constant). 

For weak waves the previous solutions are compared with an analytical solu- 
tion which is based on w and c,, constant. These are valid assumptions for such 
waves. 

By regarding the exact numerical solution as a representation of an experi- 
mental record it is possible to assess the accuracy with which w would be deter- 
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mined from such a record by means of the previous approximate solutions. (Note 
that these previous solutions obtain over-all values of w,  and not local values.) 

The numerical integration was done for a shock-wave in nitrogen of Mach 
number MI = 8.0, and with TI, the temperature ahead of the shock-wave, equal 
to  300 OK. Values of 7i were taken from N.B.S. Circular no. 564. The results were 
obtained in the form of the density ratio, etc., as functions of wmx/vm, where the 
suffix m denotes the value of the quantity a t  the point in the relaxation region 
oorresponding to  T = 8(Ta+T'), so that only the value of the constant B, 
occurring in equation (2), was required. By fitting (2) to  Blackman's experi- 
mental results it was found that B = 223 (OK)+. 

It is unlikely that the use of a slightly different relationship between w and T 
would alter the main conclusions reached in this paper. 

Because of the labour involved, prior to Johannesen's paper, in obtaining 
solutions to the exact shock-wave equations for varying w ,  previous workers 
made various assumptions in an attempt to simplify matters. 

Many of these assumptions concerned the energy equation, and this fact affords 
a convenient means of classifying the solutions. Energy equations that have been 
used are : (a) exact, ( b )  constant-enthalpy, (c) Bebhe-Teller (d??/dc = constant), 
and (d) constant-internal-energy. All these assumptions have the advantage that 
they eliminate the velocity from the energy equation. The validity of these assump- 
tions is assessed by means of the Rayleigh-line equations and numerical checks. 

The other main type of assumption is to consider w and cVib constant in 
the relaxation region. When the assumption of constant w is made it is, of course, 
only possible to  obtain an over-all value of w from such a solution. 

A full list of solutions discussed in this paper, together with the assumptions 
made in obtaining any particular one of them, is given in table 1. When a solu- 
tion is mentioned in the text it will be followed by a Roman numeral correspond- 
ing to its position in this list. 

Sections 2 to 6 deal with these solutions and assumptions. The conclusions 
reached in these sections are summarized in section 7. In  section 8 previous 
methods of determining w are discussed. 

2. Exact-energy-equation soiutions 
The numerical solution already mentioned belongs to  this class and, as stated, 

is called the exact solution. 
If w and c,b are assumed constant in the relaxation region, then it is possible 

to  integrate the relaxation equation analytically using the correct shock-wave 
equations. This can be done for both fully and partly dispersed shock-waves 
(ii and vi). 

The assumption of constant w is by no means valid for strong shock-waves 
in which departures from a mean value can be as high as 20 or 30 %. Even for 
fairly weak waves, if the temperature ahead of the shock is high, some accoud 
may have to be taken of the variation in w .  

The latter of the two assumptions, constant Cdb, predicts that the equilibrium 
vibrational energy will be a linear function of the temperature in the relaxation 
region, and for most shock-waves this is a reasonable assumption. 
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Assumptions 
concerning 

Form of energy F-----'-------~ Further 
Solution equation used w Cvib assumptions 

- - - Exact Exact 
halytical solution Exact 
for partly dispersed 
shock-waves 
(Blythe) 

Constant Constant - 

Broer's analytical Exact 

Approximate form Exact 
solution 

of analytical solu- 
tion (ii) 

Constant Constant - 

Constant Constant Assume that the 
= (C"lb)l 

term log{(v - V2)lVIl  
dominates the 
relaxation 

Lighthill solution Exact 
for partly dispersed 
shock-waves 

AnaLytical solution Exact 
for fully dispersed 
shock-waves 

Griffith-Kenney Exact 
solution for fully 
dispersed shock- 
waves 
Lighthill solution Exact 
for fully dispersed 
shock-waves 

(Blythe) 

Bethe-Teller and Exact 
Gunn solutions for 
fully dispersed 
shock-waves 

(x) Constant enthalpy 

(xi) Gunn 
(xi;) Blackman 
(xiii) Approximate form 

numerical solution 

of Blackman's 
solution 

(xiv) Bethe-Teller 

(xv) Smiley-Winkler 
numerical solution 

(xvi) Constant internal 
energy numerical 
solution (Herman 
& Rubin) 

(xvii) Constant 5 

Constant - 0 Assume that the 
= u2 term log{@ - vz)/vJ 

dominates 
the relaxation 

Constant Constant - 

Constant Constant Neglect variation 
of the v/vl term 

Constant Constant See Lighthill 
(1956) ; assump- 
tions valid only 
for very weak 
waves 

Constant Constant See Gunn (1946) 

Constant-enthalpy - - - 
Constant-enthalpy Constant Constant - 
Constant-enthalpy Constant Constant Constant pressure 
Constant-enthalpy Constant Constant Constant pressure, 

x = et, and 
P,/{Pa + ( ~ 2  -Pa) 
x exp( - cnm w,z/c,, ti)) .i: 

- - - Bethe-Teller 

Bethe-Teller Exponential - 
variation 
in v / w ;  see 
equation 
(24) 

Constant-internal- - 
energy 

I 

- - - Assume thst 
Cr = 5,inthe 
relaxation region 

TABLE 1 

3-2 
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as functions of the velocity v. Equation (1) becomes 
In  order to integrate ( 1 )  analytically it is convenient to express the variables 

rw, dx u[bl - (ya + 1 )  u] ___~~_- - - 
V ,  du ~ ~ - d ~ u + d z  ' 

where 21 = v/vl, 

b, = ya+ l/m& b2 = &(ya- 1)+ 

and 

(3)  

K is defined by 3 = (C,ib),T- K.  The constant value of w was assumed to be w,. 
Consider first of all partly dispersed shock-waves. The denominator on the 

right-hand side of equation (3) is proportional to 3 - c. This is zero at the 
final equilibrium position and thus v = v2 must be a root of the denominator. 
If the other root is h then (3) is easily integrated to give 

( 5 )  
rw, x 

V l  
- +constant. 

A similar type of solution was obtained by Broer (1951),  (iii), who assumed 
that (Cvib)m = (cab)l, an assumption that is valid only for weak waves. 

A comparison between the above solution, (ii), (equation 5 )  and the exact 
solution (i) is shown in figure 1. As can be seen the solution appears to give a 
satisfactory mean prediction of the density as a function of x over the region 
in which the major portion of the density change occurs. 

For strong shock-waves, the variations in the terms log (h-v/v,) and v/vl 
are small compared with the variation in log (v/vl - v,/v,). Thus one can approxi- 
mate equation ( 5 )  to 

This solution, (iv), is also plotted in figure 1. For weak waves the agreement 
between (6) and ( 5 )  becomes worse, as the term log ( A  - v/vl) becomes important. 

Lighthill (1956) obtained a solution, (v), of the form 

by assuming that on the right-hand side of equation ( 3 )  v could be replaced by vz 
except in the term v-v2  in the denominator. Furthermore he assumed that 
the constant value of w was w2, and that y,,, + ya. 

This solution, (v), is thus valid only for waves in which 7, + ye, and it is 
not valid for weak waves. Obviously it has only a limited range of application. 
Figure 1 shows this solution for a strong shock-wave in which ym is noticeably 
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less than ye, and also w2 is considerably less than w,. It is immediately apparent 
that the errors which are introduced into the density curve by incorrect applica- 
tion of equation (7) are large. 

In  order to obtain the solution (vi) for fully dispersed shock-waves reconsider 
equation (3). The denominator on the right-hand side of this equation will now 
have roots v = wl, and v = vz, as there is now no diffusion-resisted part of the 
wave and (3) will be valid throughout the wave. Equation (3) can be integrated 
as before, and the result can be obtained from (5) by simply putting h = 1. 
(In fact it can easily be shown that h = 1 when ym = yl. Previously one dis- 
tinguished between y,and y1 because of the presence of the diffusion-resisted part 
of the wave.) 

%z x l v m  
FIQURE 1. Comparison of solutions based on the exact energy equation. MI = 8.0, 
T = 300 OK, in nitrogen. - , Exact solution, (i); -- , analytical solution, (ii), 
(Blythe); - . -, approximate form of solution (ii); - - - -, Lighthill solution, (v). 

Both the log terms are now equally important, though the term w/vl can be 
omitted without serious error (cf. Griffith & Kenny (1957), (vii)). Lighthill 
(1956), (viii), gives a full discussion of fully dispersed waves, but his analysis is 
only applicable to very weak weaves. Bethe & Teller (1941) and Gunn (1946), 
(ix), have also analysed fully dispersed waves but in terms of the temperature 
rather than the velocity. This solution, (ix), would be invalid if it  were possible 
for the temperature to have a maximum in a fully dispersed shock-wave. This, 
however, is impossible for an ideal diatomic gas (neglecting anharmonicity) as 
the required condition is that yl < (13/11). 

The preceding solution (ii) can be expressed in terms of the time t rather than 
the distance x. The expression corresponding to (5) is 

= - rw,t + constant. (8) 
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velocity can be obtained. In fact 
One can obtain a result similar to (6) from which a relaxation time T, for the 

V2/Vl ( m p -  1) 1 
7, = 

r(h - V 2 l V l )  om ’ 
which has the limiting value 

T, -+ 11/(14q,J 

as m, -+ co, for a system of fully excited harmonic oscillators. 

3. Constant-enthalpy solutions 

more common approximations made in the literature on this subject. 
The assumption of constant enthalpy in the relaxation region is one of the 

The energy equation (equation (6) of Johannesen’s paper) is now replaced by 

h = constant, 

or cPa T + cr = constant. (11) 

As cr is calculated from this assumption, the condition that constant enthalpy 
be a good approximation is that 

1. 

From the Rayleigh-line equations it can be shown that 

Obviously (12) is not satisfied for weak waves where m and m, are of order 
unity. However, as m, -+ 00, for a system of fully excited harmonic oscillators, 
equation (13) gives 

1 1 

(The effect of anharmonicity makes the second of these two limits smaller.) 
This result, that the constant-enthalpy assumption is valid only for strong 

shock-waves, could have been anticipated from a knowledge of the temperature 
profile in weak shock-waves. For such shock-waves it is possible for the tempera- 
ture to increase in the relaxation region, whereas the constant-enthalpy assump- 
tion predicts that the temperature must always decrease and hence leads to a 
totally incorrect qualitative picture. Further elaboration on this point is given 
later. 

In  order to check the conclusion concerning strong shock-waves numerical 
integration, (x), using the constant-enthalpy assumption, was performed for the 
case Ml = 8-0, Tl = 300 “K, in nitrogen. Before this can be done one has to decide 
what value the enthalpy should take. It was found that the ‘2 ’  position value 
gave a better result than did the ‘a’ position value. The comparison with the 
exact solution, (i), is shown in figure 2, and, as can be seen, the assumption 
introduced little error in the density as a function of distance. 
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@,XI% 

FIUURE 2. Comparison between the exact solution, (i), and the solutions based on the 
constant-enthalpy assumption. MI = 8.0, TI = 300"K, in nitrogen. - , Exact 
solution, (i) ; - - - , constant enthalpy numerical solution, (x) ; - -, Blackman's solution, 
(xii) ; - . -, b lack man's approximite solution, (xiii). 

2.5 

analytical solution, 

0 1.0 2.0 3.0 

%t 
FIUURE 3. Comparison between solution (ii) which is based on the exact energy equation, 
and solution (xi), which is based on the constant-enthalpy assumption, for the tempera- 
ture profile in the relaxation region in a weak shock-wave. m, = 1.15, TI = 3000 O K ,  

in nitrogen. 
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By the further assumption that w and cVib be constant an analytical solution 
for the temperature can be obtained using only the constant-enthalpy assump- 
tion and the relaxation equation. It is for this reason that the constant-enthalpy 
assumption has proved so useful in practice. (A similar remark could be made 
about the other energy equation assumptions.) This solution, (xi), was first 
obtained by Gunn (1946) and it can be written 

Equation (14) is, of course, invalid for weak waves. This is demonstrated quite 
strikingly in figure 3 where (14) is compared with the analytical solution (ii), 
which is based on the exact energy equation, for m1 = 1-15, T, = 3000°K, in 
nitrogen. The temperature variation in this shock-wave is very small, even 
though TI = 3000 OK, and the assumptions of constant w and constant Cvib are 
still valid. The discrepancy is thus due solely to the constant-enthalpy assumption. 

(Note that om as previously defined would not, in general, be a sound estimate 
of the constant value of w for shock-waves which have a maximum in the tempera- 
ture profile in the vibrational relaxation region. For such shock-waves om should 
be taken to mean the constant value, whatever that constant value is.) 

Blackman (1956), (xii), further assumed constant pressure in the relaxation 
region from which 

or 

The constant-pressure assumption is reasonable except for weak waves. (The 
density always increases in the relaxation region, hence the constant-pressure 
assumption implies that the temperature must fall, a condition not valid in 
weak waves.) 

Note that in this case the relaxation time for the velocity is given by 

Tm = C p a l ( C p m ~ m ) ~  (16) 

which has the limiting value of 7/(9wm) for a system of fully excited harmonic 
oscillators. Comparison with the previously derived result (10) reveals that the 
limiting values are different by less than (100 urn)-,. 

In order to analyse his experimental results Blackman made the further 
assumption that the term p2/pa - 1 was small and hence that 

( P Z / P ~ ) / C '  + ( P ~ / P ~ - ' ) ~ X P  ( - ~ m t c p r n / c p a ) >  

could be replaced by unity. Further he wrote x = t / F  where F = +(va + vz). 
Equation (15) then becomes 

This exponential law (17), (xiii), has been deduced by means of a large number 
of assumptions and whether m not it is valid is very much open to question. It is 
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certainly true that Blackman found experimentally that the density varied 
exponentially with distance in the relaxation region. However this simply 
requires that -- ’2 -P  - exp ( - c x )  

P2 -Pa 

where C is some constant, not necessarily equal to % 2. 
cpa v 

0 05 10 1 5 2.0 
0,Xl;ii 

FIUURE 4. Comparison between the Blackman solution, (xiii), and solution (ii) for a 
weak wave. ml = 1-15, Tl = 3000 OK, in nitrogen. ___ , Analytical solution, (ii), 
(Blythe) ; - -, Blackman’s approximate analytical solution (xiii). 

Figure 2 compares equation (17) with the exact solution (i) for a strong wave. 
As can be seen there is a marked discrepancy between the two solutions. Inclu- 
sion of the term neglected by Blackman (i.e. solution (xii), equation (15)) lessens 
this discrepancy (see figure 2). 

For weak waves it is expected that equation (17) will be invalid because of the 
assumption of constant enthalpy. This prediction is confirmed in figure 4 where a 
comparison between equation (17) and solution (ii), which is based on the exact 
energy equation, for m, = 1.15, TI = 3000 OK, is shown. (As previously pointed 
out the assumptions of constant w and constant C,ib are perfectly valid in this 
wave.) 

4. Solutions based on the Bethe-Teller assumption 
Consider d a  - -p. z- 

For ,u = C d b / C P a  (18) is equivalent to the constant-enthalpy assumption. From 
the Rayleigh-line equations it can be shown that p is strictly given by 
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Bethe & Teller (1941) assumed bhat p was constant and calculated p by 
matching the integrated form of (18) for constant p, namely 

to the boundary conditions at ‘a ’  and ‘2’. Thus 
(20) 

- u+pu = q5, a constant, 

The condition that (20) be a, valid method of calculating u is that 
A ( 3  + p r )  1 Au 

where p is given by (21). 
It can be shown that as m, + 03, for a system of fully excited harmonic oscil- 

lators, 

so that the assumption is valid for strong shock-waves. 
The analysis for weak waves is a little more difficult. For m2 of order l/y, it 

can be shown from (19) that it is possible for ,u to change sign in the relaxation 
region, although the form used, (21), predicts that p wil l  be positive or negative 
according as Ta is greater or less than T,. Hence, for weak waves, an incorrect 
qualitative picture would arise, even though the criterion (22) might predict a 
good quantitative agreement. For even weaker waves, m of order unity, it is 
easily shown that (22) is not satisfied. 

Hence as in the case of constant enthalpy, it would appear that this assump- 
tion is valid only for strong shock-waves. 

A numerical integration, (xiv), was carried out using the Bethe-Teller assump- 
tion for a shock-wave of Mach number M, = 8.0 in nitrogen at T, = 300 OK. 

Excellent agreement was obtained with the exact solution (i) (see figure 5), thus 
verifying the above conclusion. 

By assuming w constant, one can easily derive similar results to those obtained 
by Gunn, (xi), and by Blackman, (xii, xiii), for the constant-enthalpy oase. 
In fact all one has to do is to replace cpm/cpa by 1 + p in the previous expressions. 
The conclusions concerning such solutions would be similar to those obtained 
before. 

Smiley & Winkler (1954), (xv), attempted to improve this type of analytical 
solution by allowing for the variation in w .  From the relaxation equation (1) 
and equation (18) it can be shown that 

Smiley & Winkler then assumed that the variation of w/v could be represented by 

This assumption has no physical foundation and is purely a curve-fittang 
approximation. Nevertheless, as will be seen later, it turns out that this assump- 
tion leads to very satisfactory results. 
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Equations (23) and (24) are easily combined to give 

where s = (1 + p )  ( v / w ) ~  ( W / V ) ~ .  

The comparison between this solution, (xv), and the exact solution (i) for 
Nl = 8.0, Tl = 300"K, in nitrogen is shown in figure 5. The agreement is very 
good, confirming that (24) is a valid approximation. (It has already been estab- 
lished that the Bethe-Teller assumption is valid for strong shock-waves.) 

0 05 1.0 15 2.0 
wni XlVm 

FIGURE 5. Comparison between the exact solution (i) and solutions based on Bethe-Teller 
assumption. M ,  = 8.0, TI = 300 OK, in nitrogen. -, Exact solution, (i) ; 0 ,  Bethe- 
Teller numerical solution, (xiv) ; x , Smiley-Winkler analytical solution, (xv). 

5. Constant-internal-energy solution 
Herman & Rubin (1959) made the assumption of constant internal energy 

in the relaxation region. It is very difficult to justify this assumption. Certainly 
the values of the internal energy at the two ' end ' points differ far more than the 
values, for example, of the enthalpy. 

The condition for this assumption to be valid is that 

lgl< 1, 
where e is the internal energy. 

It can be shown from the Rayleigh-line equations that 
de ya-1  - = -__ 
d g  y,(l-m2)' 

For weak waves, m + 1 and the assumption is obviously erroneous. As 
ml+ m it is found that for a system of fully excited harmonic oscillators 
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Thus it can hardly be said, for any Mach number, that the assumption is valid. 
A numerical integration, (xvi), confirmed this prediction for a strong shock- 

wave (figure 6) .  (ez was used as the constant value; if e, were used the disagree- 
ment would be slightly more marked.) 

No analytical solutions using this assumption have been given, although one 
could easily be obtained in a way similar to that used to derive the constant- 
enthalpy solution (xi). It would, admittedly, be of little use. 

wm xl%n 

FIGURE 6. Comparison between the constant-internal-energy solution (xvi) and the 
exact solution (i). MI = 8.0, TI = 300 OK, in nitrogen. __ exact solution ( i ) ;  
_L constant-internal-energy numerical solution (xvi) (Herman & Rubin). 

6. Constant-8 solution 

for constant w ,  (xvii). The constant value of ?F must, of course, be ?Fz, and then 
If %is assumed constant the relaxation equation can be integrated immediately 

- 
(Tz-G -- - exp ( -w,t ) .  

(Tz - ?71 - 

This was one of the earliest solutions obtained for vibrational relaxation regions. 
It is expected that for strong shock-waves, in which both w and 5 vary by 

large amounts, this solution will give poor agreement with the exact solution (i). 
In  fact from the Bethe-Teller assumption, which is valid for strong shock-waves, 
it can be shown that the relaxation equation will be of the form 

only if w ' =  ( l + p ) w .  1 
For strong shock-waves in a diatomic gas ,u is roughly +. 
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For weak shock-waves in which the variation of temperature, and hence of 
w and 3, is small, agreement will be much better, 

In  order to obtain the density, temperature, etc., from such a solution one can 
either use the correct shock-wave equations or any of the previously discussed 
assumptions. 

7. Conclusions from the preceding sections 
Before proceeding to discuss the inverse problem, namely, for a given density 

distribution, what errors are introduced in w ,  measured from such a distribution, 
by using the various solutions so far considered, the results obtained in the 
previous sections are summarized. 

These conclusions are: 
(1) The assumptions of constant w and cVib alone do not lead to any serious 

(2) The constant-enthalpy assumption is valid for strong shock-waves only. 
(3) The Blackman approximate solution, (xiii), for p, which is partly based on 

the constant-enthalpy assumption, gives only fair agreement even for strong 
shock-waves. However, inclusion of the term neglected by Blackman lessens 
this discrepancy for strong waves (solution (xii)). 
(4) The Bethe-Teller assumption is valid for strong shock-waves and is 

superior to the constant-enthalpy assumption. 
( 5 )  The Smiley-Winkler solution, (xv), is excellent for strong shock-waves. 
(6) The constant-internal-energy assumption is invalid for all shock-waves. 
(7) The relaxation equation can be written in the form 

error in the density distribution. 

a(T 
at 
- = oJ(32 - cr) 

for weak waves only. For strong shock-waves w should be replaced by (1 +p)  w .  

8. The determination of o from experimental records 
I n  sections 2 to 6 the merits of the various solutions for predicting the structure 

of the relaxation region for a given w(p ,  T) have been discussed. The results 
obtained there can also be used to indicate probable errors in the value of w 
which would be obtained if any of these solutions were used for the reverse process 
of determining w from experimental results. , 

For this purpose regard the exact solution (i) (which gives, say, p as a function 
of wrnx/vu,) as representing the experimental data. Any other solution, say A ,  
can be written in the form 

fA(p) = wrnxlvrn. 

Obviously 0, would be determined from such a solution by plottingf,(p) against 
x and fitting the best straight line. Thus by plotting fA againstf,,,, an immediate 
check on the value of w, determined from A as compared with the true value is 
obtained . 

Of the analytical solutions discussed only two have actually been used to 
determine w from experimental results. These are the Blackman, (xiii), and 
Smiley-Winkler, (xv), solutions. 
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For the Blackman approximate solution, (xiii), fA < fexpt throughout the 
relaxation region for all shock-waves. Hence the Blackman value of w, will be an 
underestimate of the true value. In  particular for N, = 8.0, TI = 300"K, in 
nitrogen it was found that the Blackman value would be roughly 10 yo too low. 
(This is provided that the variation in w/w, is correctly predicted by the expres- 
sion (2), which appears to be a reasonable assumption from the available experi- 
mental data.) 

For the weak wave m, = 1.15, T, = 3000 OK, in nitrogen, the Blackman value 
would be approximately 12 % too low. 

These estimates were obtained by plotting fBlackman against fexpt. An attempt 
to draw the best straight line through these points creates the difficulty of how 
far into the relaxation region one should plot the points. Theoretically the 
relaxation region stretches from x = 0 to 00 (for a partly dispersed shock-wave). 
In  practice, however, measurements will probably be confined to a distance of, 
say, 2w,/v,, and it was for this region that the best straight line was obtained. 

If Blackman had not replaced the term 

by unity, i.e. if he had used his original solution, (xii), then the value of w, 
obtained would have been much improved for strong waves. In  fact for Nl = 8.0, 
TI = 300" K, in nitrogen, the value would be only 1 % less than the true value. 

It is perhaps worth mentioning that if one applies the same analysis to the 
analytical solution (ii), which is based on the exact energy equation, then it is 
found that the value of w, which would be obtained from this solution would 
differ by less than 4 yo from the true value for the strong shock-wave. 

The second of the two solutions that have been used for evaluating w is the 
one due to Smiley & Winkler, (xv). The agreement between this solution and 
the exact solution (i) was excellent for strong shock-waves. However, as (25) 
depends on both w, and w2 it is not possible to use this solution directly to obtain 
a value of w from experimental records. To overcome this difficulty Smiley & 
Winkler assumed that 1 E ) 2 ( : ) u - 1 i  

According to their results this assumption is permissible for carbon dioxide, 
the gas investigated by them, over the Mach-number range covered by them, 
XI = 1.5 to 4. Equation (30) becomes invalid for stronger shock-waves in carbon 
dioxide. In  general this will be true for most gases. 

Also, it  is doubtful whether it is permissible to use a relaxation equation of 
the form (1)  for carbon dixoide, as presumably more than one relaxation fre- 
quency will exist (Greenspan & Blackman 1957). In  the following discussion this 
last point will be ignored. 

Smiley & Winkler measured the position at which 

-- P2-P 1 
P2-Pa e '  

_ -  
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Suppose this position was x = S,, and that 
- 
b2-Cr 

*2 - a1 
-- - - -exp(-Z) at x = S I .  

Then from (25) and (31), using the approximation (30), it  is found that 

where 

From this equation, by fist of all ignoring the small term k{(v/w),  (o/v), - 11, 
a set of values of w, corresponding to pa and T, can be found. An empirical curve 
for w as a function of T can then be established (assuming that w is proportional 
top). Secondly, by including the small term, obtained by means of the empirical 
curve, the final corrected value of w can be found. 

Smiley & Winkler assumed that k = l / e ,  i.e. 1 - 1 +p. Unfortunately over 
the range covered by them k varied from 0-28 to 0-18, while l / e  = 0-37. This 
discrepancy leads to errors in w of the order of 15 to 20 % for the stronger shock- 
waves (.MI of order 4). 

The main drawback of the methods of evaluating u discussed in this section 
is that they determine only one over-all value of u per relaxation region. The 
Blackman method in particular also leads to errors of the order of 10 % in this 
value. It is obvious that a method whereby local values can be accurately deter- 
mined is needed. 

Such a method was developed by Johannesen in the preceding paper. The 
amount of numerical work necessary was reduced to a minimum by the use of 
the Rayleigh-line equations. 

The author would like to thank Dr N. H. Johannesen for his advice and 
criticism during the preparation of this paper, and also Mr H. K. Zienkiewicz 
for many helpful discussions. The author was in receipt of a grant from the 
Department of Scientific and Industrial Research during the course of this work. 
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